The BSE senior design experience is very rewarding, as students get to work on a single real-world problem for a full academic year. A problem is chosen and the design begun in the fall semester, with the design completed and a prototype built and tested in the spring semester. The problem is usually very broad, and students make extensive use of design mentors, research staff, and a well-equipped shop in developing their design and prototype.
 
 

The video below shows the 2019 BESS Senior Design Project:  

 
 

2018-2019 Projects:

 


Image of Club Team Members Hydraulic Fracking Sub-Soil for Stormwater Infiltration Enhancement
Matthew Johnsen, Christian Patterson, James Lewis and Ryan Watson

- First Place at ASABE Gunlogson Design Competition
- Second Place at EUReCA UT Engineering Design Competition


Rain gardens are common stormwater control measures that are essentially shallow depressions in the landscape created to capture impervious runoff and infiltrate it into the ground. Rain gardens installed above heavily compacted soil tend to become inundated with ponded stormwater that will not infiltrate due to low permeability. The ponded stormwater converts to runoff and carries with it the pollutants that would have been sequestered in the rain garden. The design team’s approach to mitigate rain garden failure is to emulate hydraulic fracking done by the oil and gas industry to induce fractures in compacted soil layers. These fractures offer multiple connected pathways for the infiltrated stormwater to enter the subsoil, greatly increasing the rate at which water can flow through a rain garden. Biochar was selected as a proppant for its ability to adsorb contaminants and its strength to resist compression. During testing of control and fracked plots, the designed system greatly increased infiltration from an average of 2 mm/hr to 88 mm/hr which is well above the Knoxville Stormwater Standard of 12.7 mm/hr for a functioning rain garden (City of Knoxville Stormwater Engineering, 2018). The results showed that a hydraulic fracking method is an effective means of increasing infiltration within heavily compacted clay soils that can often exist beneath rain gardens. Remediation of these stormwater control measures by hydraulic fracking represents an immense savings of cost and time as compared to demolishing and re-installing the infrastructure.

 


 

Image of Club Team Members

Trash Removal And Collection Equipment (TRACE) Josh Benavidez, Lindsay Brown, Macy King, Bailey Langford
Advisor: Dr. Daniel Yoder



Floating garbage in urban streams is not only aesthetically displeasing, but can also be harmful to ecosystems. This student team developed a semi-automated system garbage removal system for urban streams, which the team chose to call TRACE (Trash Removal And Collection Equipment). TRACE system components included: an angled boom to concentrate the garbage, a conveyance system to remove concentrated garbage from the stream, a storage component to both drain and store the collected garbage, and the electronics required to power and control the system. The PVC collection boom is made up of modular section and extends halfway across the stream at a 45° angle upstream, shown by experimentation to be the optimum collection angle. Experimentation with various designs also resulted in a basket conveyor system to remove the concentrated floating garbage and empty if into a storage container. Sensors were placed throughout the system to ensure the equipment functionality during high flow events and to alert city workers when the storage component needed to be emptied. The system operated using only solar power, enabling use in remote locations without connection to the power grid. The system was built and tested in a Knoxville, TN urban stream. By providing a cost efficient and effective solution to floating garbage, with TRACE urban waterways will be able to return to a healthier state and will better serve their functions of recreation and wildlife habitat.

 


 

Image of Club Team Members Design of a Solar-Powered Non-Thermal Plasma Device for Microbial Disinfection
Luke Martin, Calvin Conn, Jordan Brewer and Cabot Anderson


As world population grows, access to clean drinking water is becoming scarce. This problem is especially prevalent in remote or underdeveloped areas, where traditional medium to large scale water treatment options are not available or too costly. Presented is the design of a completely solar-powered water treatment system that does not use consumables. Non-thermal plasma (NTP) ozone generation is a method of microbial disinfection used in water treatment. Such systems utilize grid or other stationary power sources. In this project, a water disinfection system consisting of an NTP ozone generator, ozone injection system, and solar-based power supply was designed and assembled. The system is using solar power, enabling deployment in off grid locations. System components and characteristics were optimized to increase practicality of the device. Functionality and safety of plasma generation and water disinfection were assessed through testing; results showed that the system is capable of achieving the World Health Organization and Environmental Protection Agency standards for clean drinking water based on E. coli concentration, suggesting strong potential for device implementation in remote areas.

 

 



Image of Club Team Members 

 

  

 

As examples, the senior design projects in the 2017-18 academic year were the following: 

 
  1. ​2nd generation biochar - Dr. Abdoulmoumine and Dr. Tyner
  2. Landfill flare heat capture for wastewater treatment - Dr. Buchanan
  3. Scuba-mapper for deeper water - Dr. Ayers
  4. Automated plant height sensor - Dr. Wilkerson
 


 

 

The BSE senior design projects are entered in a national design competition, and they generally do quite well.  Examples of these include the ASABE Gunlogson Open Competition  or at the ASABE Agco Competition.

 

  

Below is a table listing the BSE Senior Design success for student participation in regional and national competitions: 

 

2017

 
2017 Gunlogson Competition                          Spokane                                                  1st Place                                                 Dr. Abdoulmoumine
Onsite biochar generation using green                                                                                                                         Dr. Tyner
waste
 
2017 AGCO                                           Spokane                                              3rd Place                                           Dr. Ayers
EZ-Lift: A mechanical lift assist for
foldable roll-over protective Structures
(ROPS) project
 
 

2016

2016 AGCO National Student Design Competition, National ASABE Annual Meeting
 Orlando
 1st Place Calf Health
 Dr. Wilkerson
 
2016 Gunlogson Environmental Design Competition, National ASABE Annual Meeting
 Orlando
 3rd Place Water Treatment
 Dr. Buchanan
 

 

 

2015

 
 2015 AGCO
 New Orleans, LA
 3rd Place Finish "Squeaver"
 Dr. Yoder
 
 2015 Gunlogson
 New Orleans, LA
 1st Place Finish "Water Quality Analyzer"
 Dr. Ayers 
 

 

 

2014

 
 2014 Gunlogson
 Montreal,Canada
 1st Place "A Low-Cost, Digital X-Ray Machine for Underdeveloped Countries"
 Dr. Wilkerson
 
ASABE Fountain Wars Competition, National ASABE Annual Meeting
 Montreal,Canada
 3rd Place Finish awarded for the best use of biological materials and the best sportsmanship award
 Dr. Tyner
 
 2014 EPA P3 National Design Competition in Sustainability
Washington, DC
 "Eco-friendly Additives for Biodegradation of Agricultural Mulches"
 Drs. Hayes, Debrium, Lee, and Wadsworth
 

 

 

2013

 
 2013 AGCO
 Kansas City, MO
2nd place finish. “A systematic Approach to the Improvement of High Tunnel with Regards to their Ability to Withstand Wind” 3rd place finish. “Subclinical Mastitis Inline Detection Systems (S.M.I.D.S.)”
Dr. Hayes

 

Dr. Wilkerson

2012

2012 International 1/4 Scale Tractor Student Design Competition
 Peoria, IL
 23 teams competing, BESS finished in the middle of pack which was excellent, considering we had not fielded a team in several years.
 
 
2012 Gunlogson
Dallas, TX
1st Place "Vertical hydroponic masonry wall design for use in building Haitian homes"
Dr. Yoder
 
2012 AGCO, National ASABE Annual Meeting
Dallas, TX
1st place “Turf tire traction tester for use by a Tennessee industry”
Dr. Wilkerson
 
2012 Fountain Wars
Dallas, TX
1st Place Finish
Dr. Tyner
 

 

 

2011

 
2011 AGCO
Louisville KY
3rd Place Finish “Blue Crab Nursery Design”
Dr. Ayers
 

 

 

2010

 
2010 Gunlogson
Pittsburgh, PA
1st place finish. “Cryogenic Weed Removal System for Organic Crop Production”
Dr. Hart
 
2010 AGCO
Pittsburgh, PA
1st place finish. “Integrated Solar Roof System”
Dr. Tyner

2009

2009 Gunlogson
Reno, NV
2nd Place Finish. “Optimized Recirculating Sand Filter Design”
3rd Place Finish. “A Self-Actuating Foldable ROPS Design”

Dr. Buchanan

Dr. Ayers