What’s Happening

Stored Grain

By Russ Patrick

Several things you need to know about the SLAM method in relationship to storing grain. This is the method that uses sanitation, loading, aeration and monitoring for stored grain pest control. When using sanitation, you must clean out the bin, inside and out. This means remove all leftover grain and/or grain pieces. Any remaining grain just adds fuel to the fire and often helps increase insect populations. Loading is another aspect of control. Proper loading is essential to help prevent damage to grain. Do not load grain up to the top of the bin. A full bin will reduce air pushing through the grain when you aerate, therefore allowing moisture to remain in bin. Aeration is one of the key factors in keeping insect populations down. During the hot days, aerate at night when it is cooler. Do not aerate during the hottest times of day. The final stage is monitoring. To monitor a bin, you must take samples of grain and look for insects, especially in wheat. You will need to confirm that you do not have any lesser grain borers. This is one of the worst insects you can have in a bin. Before filling the bins, treat with a residual insecticide, such as Tempo. Tempo provides excellent insect control, especially if insects are already present. If you are storing wheat, you may use Storcide II. Remember, read the label prior to use and use only label rates. During the monitoring stage of the SLAM method, use a grain probe to pull grain from the bin and use a sifting pan as shown in the picture. Shake the pan, generally insects will drop into the bottom pan and should be visible. If you do not know what insect you have, you may send them to the EPP diagnostic lab in Nashville or you may send them to me for identification.

Inside this issue:

- Stored Grain 1
- Soybean Rust Update 2
- Be on the Lookout for Cogongrass 3
- New Products & Label Changes in TN 4
- Springtails 5-6
- Japanese Beetles on the Move 6
- UT Commercial Recertification Program 6
- Other Pest Management Newsletters 7
Soybean rust was confirmed on Thursday, June 10th, in the US for the first time this season on soybean in Hidalgo county, Texas. Rust had been confirmed on soybean in the neighboring Mexican state of Tamaulipas earlier this year. Rust is not currently being found in the Tamaulipas area as those plantings have been harvested and the land cultivated to prepare for their next soybean crop.

Soybean rust was detected on Monday, June 28th on kudzu leaves under pine trees near a pond in Jefferson County, Florida, a site which has been historically positive and old rust spores may not have been totally killed out by the February cold snap. Rust was also detected on Wednesday, June 23rd on kudzu leaves growing along an abandoned building in Mobile, Alabama, but was not detected in surrounding kudzu patches. The amount of inoculum appears to be extremely low, according to Ed Sikora of Auburn University.

Tennessee has 13 sentinel plots established this year which are now starting to be harvested and checked for rust. All field plot samples checked so far are negative for soybean rust disease.

The projection for the next four weeks in the Southeastern US is for hot, dry weather which is not conducive to the spread or infection of soybean rust disease, so the risk is very low for rust development, as is noted on the soybean rust risk map for the period of June 26 to July 23rd.

Continue to monitor the UT soybean rust hotline at 1-877-875-2326 or the USDA Soybean Rust web site for any additional finds or new information. This is located on the web at: http://sbr.ipmpipe.org

Note: There are two predictions, one for spore movement (scale in black/white) and one for weather favorability (scale in colors). Disease risk is considered only in areas where spores can reach. In areas where spores can reach, the higher the weather favorability is, the higher the risk is. © X.B. Yang
Be on the Lookout for Cogongrass

By Beth Long

Imperata cylindrica, also known as cogongrass, is ranked as one of the 10 worst weeds in the world. It is sometimes sold in nurseries as an ornamental cultivar called ‘Red Baron’ or blood grass because of the rich red color the leaves take on in the fall. However, it can lose its color and quickly become an invasive plant problem in the landscape.

Cogongrass is very aggressive and has the capability of invading a range of sites including pastures; orchards; fallow fields; forests; natural areas; and highway, electrical, utility, pipeline and railroad rights-of-way. It is also capable of disrupting ecosystems, reducing wildlife habitats and decreasing tree seedling growth because of its rhizome growth habits. Stands of this grass are highly flammable and create a severe fire hazard, burning extremely hot, thus altering fire regimes.

In the United States, cogongrass is established in Florida, Georgia, Alabama, Mississippi, Louisiana, South Carolina and Texas. More recently it has been found in one county in Tennessee that is undergoing eradication.

This grass is a federal noxious weed and is on the Tennessee Pest Plant List. Any infestation must be identified by appropriate state or federal authorities for a confirmed report. If you think you have seen Cogongrass you need to report the following to the TN State Department of Agriculture at 615-837-5313 or e-mail anni.self@tn.gov They will need to know the site or location of the cogongrass (county, city, street address, road name/mile marker, GPS coordinates), size of infestation (approximately), is it flowering, and your contact information.

More information is available on the following UT website, along with a link to the newly published PB 1792, Identification and Control Methods for Cogongrass in Tennessee. http://eppserver.ag.utk.edu/Extension/TNCWMA/
New Products & Label Changes In Tennessee—July 2010

By Gene Burgess

The following are new pesticide registrations and label changes in Tennessee.

Insecticides

Amtide. AI= imidacloprid -- Foliar and systemic insect control in turfgrasses. (Amtide, LLC)

Sevin Technical. AI=carbaryl -- Insecticide use in manufacturing, formulating or repackaging only. (Bayer CropScience)

TreeAzin. AI= azadirachtin -- Tree injection device to manage insect pests of forest. (Bio-Forest Technologies, Inc)

Imidacloprid 2F. AI= imidacloprid -- Prevents and controls subterranean termites & carpenter ants. (Makhteshim)

Discus N/G. AI= cyfluthrin -- For broad spectrum foliage and systemic insect control. (OHP, Inc)

Rose & Flower. AI= imidacloprid -- Dual action insect protection and feeding for up to 8 weeks. (Ortho Group)

1507x59122xMon810. AI= bacillus thuringiensis -- Corn borer and rootworm-protected corn seed. (Pioneer Hi-Bred)

Transtect 70WSP. AI= dinotefuran -- Systemic control of sucking & chewing insects. (Rainbow Treecare)

Beethoven TR. AI= etoxazole -- Kills mites and suppresses whiteflies in commercial greenhouses. (Whitmire Micro-Gen)

Herbicides & Plant Growth Regulators

Cavalcade PQ. AI= prodiamine -- Post and preemergent control of problem grasses and broadleaf weeds. (Advant LLC)

Axss Glyphosate Plus. AI= glyphosate -- Postemergence systemic with no soil residual activity. (Axss USA, LLC)

Basis Gold. AI= nicosulfuron – RUP. For use on field corn. (Dupont)

Helosate Plus. AI= glyphosate -- Controls many annual & perennial grasses and broadleaf weeds in corn. (Helm Agro)

Trimec 1000. AI= 2,4D -- Broadleaf herbicide used to control various broadleaf weeds. (PBI/Gordon)

Layby Pro. AI=linuron -- Control actively growing emerged seedlings of weeds in cotton. (Tessenderlo Kerley, Inc)

Tremor AT. AI=acetochlor -- RUP; preemergence to control of annual and broadleaf in corn . (United Suppliers Inc)

Dicamba. AI= dimethylamine salt -- Control weeds in corn, sorghum, & grains . (Universal Crop Protection)

Fungicides, Rodenticides, & Other Pesticides

Serenade. AI= bacillus subtilis -- Prevents and controls various lawn diseases. (AgraQuest)

Interface. AI= iprodione -- Fungicide for prevention and control of certain diseases of turfgrass. (Bayer)

Augusta. AI= dikedugulac-sodium -- Systemic plant growth regulator applied as a foliar spray. (OHP, Inc)

Sustain 25T. AI= copper carbonate -- For pressure treating wood products. (Osmose, Inc)

TM 4.5 Select. AI= thiophanate-methyl -- Turf and ornamental fungicide. (Select Source, LLC)

Metam CLR 42%. AI= sodium methylthiocarbamate -- For soil fumigation use only . (Taminco Inc)

Key: AI = active ingredient; IGR= insect growth regulator; RTU = ready-to-use; RUP = restricted-use pesticide; HLT = lawn and/or outdoor ornamental use; (name in parenthesis) = Registrant; WSB = water-soluble bags

Note: This information was modified from July issue of TDA’s Registration Review.
Springtails

By Karen Vail

Pest management professionals are indicating that springtails, ants and mosquitoes are the subject of many of their pest complaints right now. Springtails are tiny wingless insects with distinctive heads and often a hump-backed appearance. Their name comes from a forked structure attached to the underside of the abdomen which acts as a spring to project them into the air. This “jumping” behavior gives them the appearance of tiny fleas. Other than being a nuisance, these small creatures pose little threat.

Most springtails live in rich soil or leaf litter, under bark or decaying wood, or are associated with fungi. Many are scavengers, feeding on decaying plants, fungi, molds, or algae. Springtails may become abundant among wet leaves, soil, and plant material along a house foundation or sidewalk where they can be a temporary annoyance.

Springtails build up in large numbers around structures in the spring when moisture and decaying organic matter abound. When temperatures increase and moisture decreases around a structure, springtails may move indoors searching for higher humidity and food.

Most common springtails do not survive in dry conditions. They infest buildings that have constant high humidity. This is usually in the basement, but may be in other areas with water leaks such as around sinks, baths and hot tubs. Springtails also can occur around floor drains and crawl spaces. Masses of these insects can be swept or vacuumed and discarded.

The best method of control is to stop the leak or decrease the humidity. Fans or dehumidifiers may be used to dry wet areas. In crawlspaces, maintain adequate ventilation and drainage. Water plants in the morning to allow the surface to dry in between waterings. Remove accumulations of wet leaves, mulch and other organic matter, as well as boards on the ground, to help eliminate breeding sites.

Any steps to improve ventilation and promote drying are the best long term solutions. Insecticides can be used to treat entry points into the structure, but this will not drastically reduce the number of springtails in an area because it only provides temporary relief if the favorable conditions are not corrected. Pyrethroids appear to be less effective than the older chemistry of organophosphates and carbamates. Unfortunately we don't have many insecticide options because most organophosphates and carbamates are no longer allowed to be used around structures. Potential insecticides for springtail management can be found at http://eppserver.ag.utk.edu/redbook/sections/structural.htm
Continued from page 5

Springtails are attracted to light and may enter homes or other structures under doors. Sealing entry points (see PB1303 Managing Pests Around the Home, http://utextension.tennessee.edu/publications/Documents/pb1303.pdf) or changing to a sodium vapor or yellow bug light may help reduce pest entry into the home. However, because of the springtail’s small size it may prove difficult to seal the structure adequately to prevent their entry.

In new homes where water leaks or other sources of moisture cannot be found, it is possible that fungi or molds are growing on studs in the wall voids and providing food for the springtails. In the past, we’ve received several inquiries about springtails in new homes and suspected that the food source was in the wall voids. Using dehumidifiers and adding ventilation to the walls may reduce moisture and associated fungi and molds. In most cases, the walls should dry naturally in a few years.

Modified from:

Japanese Beetles on the Move

By Russ Patrick

Japanese beetles have recently been observed in high populations at the West Tennessee Research & Education Center in Jackson, TN. Several days ago these pests were observed on some ornamentals. Japanese beetles will attack many plants, especially roses. They also can cause damage to corn by feeding on the silks preventing proper pollination.

UT Annual Commercial Application Recertification Program Rerun

By Gene Burgess

The UT Annual CA Recertification Program which was held in March was taped and will be shown again on July 14, 2010. It will be held at all outlying ITV sites if enough people sign up. The date is correct on the eCommerce website, but wrong on the Commercial Applicator Training registration form, F817. Please note that on F817 the date is incorrectly printed as July 21. If anyone attended the March meeting for points, they may not attend the July program for points. Please advertise this meeting with the correct date.
OTHER UT NEWSLETTERS WITH PEST MANAGEMENT INFORMATION

Fruit Pest News
http://web.utk.edu/~extepp/fpn/fpn.htm

Tennessee Crop and Pest Management Newsletter
http://www.utextension.utk.edu/fieldCrops/cotton/cotton_insects/ipmnewsletters.htm

Ornamental Pest and Disease Update
http://soilplantandpest.utk.edu/publications/ornamentalnwsltr.html

School IPM Newsletter
http://schoolipm.utk.edu

Tennessee Soybean Rust Hotline - 877-875-2326
USDA Soybean Rust Web Site
http://www.sbrusa.net

This and other "What's Happening" issues can be found at
http://eppserver.ag.utk.edu/Whats/whatshap.htm

Entomology and Plant Pathology Web Site
http://eppserver.ag.utk.edu

Precautionary Statement

To protect people and the environment, pesticides should be used safely. This is everyone's responsibility, especially the user. Read and follow label directions carefully before you buy, mix, apply, store or dispose of a pesticide. According to laws regulating pesticides, they must be used only as directed by the label.

Disclaimer

This publication contains pesticide recommendations that are subject to change at any time. The recommendations in this publication are provided only as a guide. It is always the pesticide applicator's responsibility, by law, to read and follow all current label directions for the specific pesticide being used. The label always takes precedence over the recommendations found in this publication.

Use of trade or brand names in this publication is for clarity and information; it does not imply approval of the product to the exclusion of others that may be of similar, suitable composition, nor does it guarantee or warrant the standard of the product. The author(s), the University of Tennessee Institute of Agriculture and University of Tennessee Extension assume no liability resulting from the use of these recommendations.

Programs in agriculture and natural resources, 4-H youth development, family and consumer sciences, and resource development. University of Tennessee Institute of Agriculture, U.S. Department of Agriculture and county governments cooperating. UT Extension provides equal opportunities in programs and employment.