How to Grow High Quality Hardwoods

Page 1
Review materials on phases/stages of forest management: Establishment/regeneration, intermediate operations, harvesting, and protection

Page 2
Generally, to produce higher-valued products, takes a higher intensity/degree of management

Should favor trees with the better grades because they have greater values. Usually the more desirable species have greater values. The better grade logs also produce the better grade lumber.

Bottomline: Takes just as much time to grow a high-grade tree compared to a low-grade tree. Thus, should provide environmental conditions conducive for growing better grades

Page 3
Values of wood after processing (refer to slide for definitions)
- Stumpage ---- paid to property owner
- Delivered Mill Price ---- what the mill pays for logs
- Mill Price (wholesale) ---- price for product once log is processed/cut
- Retail ---- product price once delivered to retailer

Realize that each step will also have profit built into the price

Questions: What are the characteristics of a high-value hardwood? How do we grow trees with those characteristics?

Characteristics of a high-value hardwood log (refer to slide)

Page 4
How do we grow trees with those characteristics (refer to slide)?

Question, then answer ------ sunlight and density (heard that before?)

Density controls stem quality straightness, cleanness, and diameter
Page 5

Light controls species composition (light tolerance of species)

Last two slides on page 5 are most important! Relationship of high density and thinning. Grow straight branch-free logs (skinny & tall trees), then thin to increase crown size/volume which will increase dbh growth

Page 6

You have seen these slides before. Thin to reduce number of trees, to give the remaining trees more growing space to increase in diameter more quickly, reducing age to maturity

Pages 7-8

Review of species and their light tolerances

Pages 8-9

To produce high-quality hardwoods ---- must consider regeneration efforts and densities, sunlight tolerance of desired species, and regulating density at appropriate time (thinnings)

Competition control of desirables, if needed, usually is

Pages 10-11

Summary and Take-Home Thoughts are self-explanatory