Short communication

Aqueous extracts of yerba mate as bactericidal agents against methicillin-resistant *Staphylococcus aureus* in a microbiological medium and ground beef mixtures

Kellie P. Burris a, Kristen L. Higginbotham b, C. Neal Stewart Jr. a, b, *

a Department of Plant Sciences, University of Tennessee, Knoxville, 252 Ellington Plant Sciences, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA
b Department of Food Science and Technology, University of Tennessee, Knoxville, 2005 River Drive, Knoxville, TN 37996-4591, USA

1. Introduction

Staphylococci are important opportunist pathogens affecting human and animal health. The most significant species relevant to humans is *Staphylococcus aureus*, which has evolved resistance to methicillin (MRSA). Methicillin resistance in MRSA is conferred by the meca gene, which encodes for the production of the penicillin-binding protein 2A, a protein with a low affinity for beta-lactams (Ubukata, Yamashita, & Konno, 1985; Utsui & Yokota, 1985; Murakami, Nomura, Doi, & Yoshida, 1987; Ubukata, Nonoguchi, Matsushima, & Konno, 1989). Approximately 25–30% of humans are colonized with staphylococci, with <2% colonized by MRSA (Gorwitz et al., 2008). MRSA infections are the sixth leading cause of death in hospitalized humans with a cost estimated between $4 billion and $6 billion each year (Boyce et al., 2005; Klein, Smith, & Laxminarayan, 2007). While MRSA infection has typically been identified as a problem in healthcare settings, MRSA is an emerging foodborne pathogen. Retail meat and poultry were found to be frequently contaminated with multidrug-resistant *S. aureus* (37–77%), with 52% of the *S. aureus* isolates being multidrug-resistant and 96% resistant to at least one antimicrobial (Waters et al., 2011). Additionally, there is a great risk for animal-to-human transmission of MRSA, recently reported in Denmark pig farmers (Lewis et al., 2008). Similar to methicillin-sensitive strains of *S. aureus*, MRSA strains also have the ability to produce enterotoxins, which can cause food intoxication if consumed. Such an outbreak occurred in the United States and was traced to MRSA-contaminated shredded pork barbeque and coleslaw prepared by a person harboring MRSA (Jones, Kellum, Porter, Bell, & Schaffner, 2002).

Antimicrobials have been routinely used in food animal production for the prevention of disease as well as for growth enhancement. Recent reports demonstrating the contamination of retail meat and poultry with multi-drug resistant bacteria have drawn public concern. Staphylococci are important opportunistic pathogens affecting human and animal health. The most significant species are *Staphylococcus aureus*, which have evolved methicillin resistance. While the best method of combating these organisms is considered to be the use of non-beta-lactam antibiotics, concerns remain that these bacteria will evolve resistance to all currently used antibiotics. We present an alternative source for a natural methicillin-resistant *S. aureus* (MRSA) antimicrobial: tea, more specifically, aqueous extracts from a tea plant *Ilex paraguariensis*, yerba mate. Dialyzed, lyophilized aqueous extracts from commercially available yerba mate tea (brand Taragui, Argentina) were produced. Extracts were screened for antimicrobial activity against MRSA in a microbiological medium, tryptic soy broth (TSB), and ground beef with 7%, 15% and 27% fat content. Methicillin-resistant staphylococci were completely inactivated after 24 h incubation at 37 °C at 4 mg/ml in TSB, 16 mg/ml in 93% lean ground beef, and 32 mg/ml in both 85% and 73% lean ground beef. Lower concentrations of extracts demonstrated inactivation of MRSA following 48 h incubation: 2 mg/ml in TSB, 16 mg/ml in both 93% and 85% lean ground beef and 32 mg/ml in 73% lean ground beef. Higher concentrations of yerba mate extracts were required to inactivate MRSA in ground beef samples with higher fat content. Our results demonstrated that relatively low concentrations of yerba mate aqueous extracts provided antimicrobial activity against MRSA in ground beef. It was concluded that natural aqueous extracts derived from yerba mate have the potential to be used as natural antimicrobials against methicillin-resistant staphylococci in foods of animal origin.

© 2014 Elsevier Ltd. All rights reserved.
The diversity of multi-drug resistant bacteria is apparently increasing, which adds to the clinical management problems wherein effective antibiotics are limited. In addition, there is a trend to use natural products as preservatives and antimicrobials. Many plants and their extracts have been used in the discovery and development of novel antimicrobial agents [reviewed in (Cowan, 1999; Sampedro & Valdivia, 2014)]. Yerba mate tea, which is produced from the leaves and stems of the shrub plant *ilex paraguariensis*, is a popularly consumed beverage in the South American countries of Brazil, Uruguay, Paraguay and Argentina. This plant has been extensively studied for a variety of pharmacological properties—antioxidant (Anesini, Ferraro, & Filip, 2006; Bastos, 2007; Bastos, Ishimoto, Marques, Ferri, & Torres, 2006; Bastos et al., 2007; Carini, Facino, Aldini, Calloni, & Colombo, 1998; Filip, Lotito, Ferraro, & Fraga, 2000; Gugliucci & Stahl, 1995; Pagliosa et al., 2010), antiobesity (Andersen & Fogh, 2001), anti-diabetic (Lunecfod & Gugliucci, 2005), diuretic (Gorgen et al., 2005), chemopreventative, antifungal (Filip, Davicino, & Anesini, 2010), stimulant (Athayde, Coelho, & Schenkel, 2000; Filip, Lopez, Coussio, & Ferraro, 1998), digestive aid (Gorzałczany et al., 2001), probiotic (Gonzalez-Gil et al., 2014), and recently for its antimicrobial activity against several common food-borne pathogens (Burriss, Davidson, Stewart, & Harte, 2011; Burriss, Davids, & Harte, 2012; Hongpattarakere, 2000, p. 189), including *Escherichia coli* O157:H7 (Burriss et al., 2011; Burriss, Davidson, et al., 2012; Hongpattarakere, 2000, p. 189) and methicillin-susceptible *S. aureus* (Burriss et al., 2011; Burriss, Davidson, et al., 2012). Additionally, yerba mate extracts have demonstrated antimicrobial activity against several other Gram-positive bacteria, *Listeria monocytogenes*, *Bacillus subtilis*, (Hongpattarakere, 2000, p. 189; Kubo, Muroi, & Himejima, 1993), *Brevibacterium ammoniagenes* (Kubo et al., 1993), and *Streptococcus mutans* (Kubo et al., 1993) as well as against the Gram-negative bacteria, *Salmonella Typhimurium* and *Pseudomonas fluorescens* (Hongpattarakere, 2000, p. 189; Kubo et al., 1993; Sari, Turkmen, Polat, & Velioglu, 2007; Tsai, Tsai, Chien, Lee, & Tsai, 2008).

These pharmacological properties of yerba mate may be attributed to several identified compounds from its extracts, including xanthines, caffeine derivatives, saponins, and minerals (Alikaridis, 1987; Bastos, 2007; Bastos et al., 2006, 2007; Bravo, Goya, & Lecumberri, 2007; Cardozo Jr et al., 2007; Carini et al., 1998; Clifford & Ramirezmartinez, 1990; Filip, Lopez, Giberti, Coussio, & Ferraro, 2001; Gomans & Schenkel, 1989; Heck & de Mejia, 2007; Marques & Farah, 2009). The minimum bactericidal concentration (MBC) of an aqueous yerba mate extract against the Gram-negative foodborne pathogen *E. coli* O157:H7 was determined to be 5 mg/ml for strain ATCC 43894 and 10 mg/ml for strain ‘Cider’ in a microbiological medium (Burriss, et al., 2012). Hongpattarakere (2000, p. 189) found that yerba mate extracts from water, methanol, acetonitrile, ethanol, ethyl acetate, isopropanol, chloroform, butanol, dichloromethane, petroleum ether, and methanol:water (4:1) demonstrated some level of antimicrobial activity against *S. aureus*. However, greatest inhibition was observed with water, methanol and methanol:water (4:1) extracts (Hongpattarakere, 2000, p. 189).

The U.S. Food and Drug Administration (FDA) values the decreased use of antibiotics for use in food animal production and has moved toward increasing their regulation for that purpose. Thus, there is a dire need for alternative compounds to control multi-drug resistant bacteria. In this study, we examined the effectiveness of aqueous extracts of commercially-available yerba mate tea in a microbiological medium at 1, 2, 4, 8 mg/ml and in 93%, 85% and 73% lean ground beef at 4, 8, 16, and 32 mg/ml against two strains of MRSA. We evaluated the anti-MRSA activities of these yerba mate extracts after 0, 3, 6, 9, 24 and 48 h at 37 °C to assess the efficacy of a potential prophylaxis of a foodborne pathogen contamination.

2. Materials and methods

2.1. Aqueous extraction

Dried leaves of a single commercial brand of yerba mate tea (Taraguí; Argentina; *ilex paraguariensis*) were purchased from a local international supermarket. Extracts were obtained by using previous methods (Burriss, Davidson, et al., 2012) with modifications as described herein. Briefly, dried leaves were finely ground to a particle size of less than 300 μm using a commercial blender (Oster, Boca Raton, Florida, USA). Sterile deionized water was added to ground leaves at a ratio of 3.6 ml to 1 g ground tissue, were allowed to stand for 2 h at 4 °C with occasional mixing to maximize extraction and were subsequently centrifuged at 5000 × g for 30 min. Aqueous extracts were then dialyzed at 4 °C against deionized water for 36 h using a 3500 MWCO SnakeSkin™ pleated dialysis tubing (Thermo-Fisher Scientific, Rockford, Ill., USA) to remove low molecular weight compounds. Dialyzed extracts were centrifuged at 5000 × g for 30 min to remove large insoluble particles and were frozen at −80 °C. Frozen extracts were then lyophilized using Labconco FreezeZone 12 L Freeze Dry System (Labconco, Kansas City, Missouri, USA) to concentrate them. Lyophilized extracts were stored at room temperature in a sealed container until testing.

2.2. Phenolic content determination

Lyophilized extract (50 mg) was rehydrated in 50 ml deionized water to a final concentration of 1 mg/ml, filtered through Whatman No. 4 paper and analyzed for total phenolic content. Phenolic content was quantified spectrophotometrically at 765 nm using Folin-Ciocalteu’s phenol reagent (Montreau, 1972) with gallic acid as the standard and results expressed in mg gallic acid equivalents (GAE)/g dry extract. Results were calculated as the mean value of three replications ± standard error.

2.3. Culture preparation

MRSA strains ATCC 33591 and ATCC 33593 were purchased from American Type Culture Collection (ATCC; Manassas, Virginia, USA). Bacteria were selected on Baird-Parker medium (Becton, Dickinson and Company, Sparks, Maryland, USA) and stock cultures were prepared by isolating a single colony, growing in tryptic soy broth (TSB; Becton, Dickinson and Company) and stored at −20 °C in glycerol. Working cultures were attained by inoculating 50 ml TSB with 200 μl stock cultures, incubating for 24 h at 35–37 °C, and were subcultured at least once. Following incubation, ca. 9.0 log10 CFU/ml cultures were diluted to ca. 6.0 log10 CFU/ml and tested for antimicrobial activity.

2.4. Time kill assays

Lyophilized extracts (0–800 mg) were diluted in 10 ml sterile water and filter sterilized using 0.22 μm (Millipore), mixed with bacteria harvested from cultures grown overnight and diluted (initial bacterial count of ca. 9.0 log10 CFU/ml diluted to a final concentration of ca. 6.0 log10 CFU/ml). Ground beef mixtures (10% w/v) were made by combining 30 g of commercially obtained ground beef (93%, 85% or 73% lean ground beef; Kroger, Inc., Knoxville, Tenn., USA) with 300 ml tryptic soy broth (TSB; Becton, Dickinson and Company) and sterilized by autoclaving for 30 min. A total volume of 25 ml was used, which consisted of 12.5 ml of TSB or TSB ground beef mixture (10% w/v) at 35 °C and 200 μl stock cultures, incubating for 24 h at 35–37 °C, and were subcultured at least once. Following incubation, ca. 9.0 log10 CFU/ml cultures were diluted to ca. 6.0 log10 CFU/ml and tested for antimicrobial activity.
sample (0.1 or 1 ml) was collected, serially diluted in 0.1% peptone, plated in duplicate (0.1 or 1 ml) using tryptic soy agar (TSA; TSB, Becton, Dickinson and Company, and agar, Fisher Scientific, Fair Lawn, NJ, USA), incubated for 24 h at 35–37 °C, and then enumerated (expressed as log10 CFU/ml). All treatments were plated in duplicate, each experiment was repeated at least twice, and average values (log10 CFU/ml) were reported.

2.5. Statistical analysis

A completely randomized design was used. All experiments were replicated at least twice and each treatment was plated in duplicate for analysis. Data were analyzed by analysis of variance (ANOVA) using the general linear model (SAS 9.4, SAS Institute, Cary, N.C., USA). Least significant differences (LSD) were used to compare treatment mean values when significant differences (P < 0.05) were found. Error bars represent 95% confidence intervals for the mean using LSD.

3. Results

For every 100 g of ground yerba mate tea (particle size less than 300 μm, brand Taragui, Argentina) used, approximately 4–5 g lyophilized extract was acquired. Phenolic content was determined to be approximately 77 mg CAE/g lyophilized extract.

Yerba mate extracts at all concentrations tested were effective at inactivating MRSA ATCC 33591 and ATCC 33593 to undetectable levels in microbiological medium after 24 h, an approximate 6.0 log10 CFU/ml reduction (Fig. 1). Complete inhibition of MRSA ATCC 33591 and ATCC 33593 to undetectable levels occurred after only 12 h at 8 mg/ml and 4 mg/ml respectively (Fig. 1).

Inactivation to undetectable levels (ca. 6.0 log10 CFU/ml reduction) of a 1:1 mixture of MRSA strains ATCC 33591 and ATCC 33593 was observed at 4 mg/ml in TSB, 16 mg/ml in 7% fat ground beef mixture and 32 mg/ml in 15% fat and 27% fat ground beef mixtures after 24 h incubation and at 2 mg/ml in TSB, 16 mg/ml in 7% and 15% fat ground beef and 32 mg/ml in 27% fat ground beef after 48 h (Fig. 2). The higher the fat content of the ground beef mixtures, the greater the concentration of yerba mate extract was required to inactivate MRSA.

4. Discussion

In the present study, extracts from a commercial tea, yerba mate, were examined for their effectiveness at inhibiting and/or inactivating MRSA in microbiological medium and in ground beef mixtures with varying fat content. Yerba mate is known to contain numerous bioactive compounds including polyphenols, xanthines, caffeine derivatives, saponins, and minerals (reviewed in (Bastos, 2007; Burris, Harte, et al., 2012, 2013; Hongpattarakere, 2000, p. 189; Kubo et al., 1993; Prado Martin et al., 2010). While we have not fully identified the compound(s) contributing to its antimicrobial activity, crude extracts and several isolated compounds derived from yerba mate have been shown active against a broad spectrum of Gram-positive and Gram-negative bacteria (Burris et al., 2011; Burris, Harte, et al., 2012; Hongpattarakere, 2000, p. 189; Kubo et al., 1993; Prado Martin et al., 2013; Sari et al., 2007; Tsai et al., 2008), thus demonstrating its potential to be used as a novel antimicrobial in foods or animal production to combat methicillin-resistant staphylococci or other foodborne pathogenic bacteria. Ethanolic and methanolic extracts of yerba mate were shown inhibitory to S. aureus, L. monocytogenes, and E. coli O157:H7 (Burris, Harte, et al., 2012). In our present study, higher concentrations of yerba mate (4–16 times higher) were required to inactivate S. aureus in ground beef as fat levels increased. The highest effective concentration of yerba mate required to inactivate MRSA in microbiological medium was ineffective at eliminating MRSA in ground beef mixtures. Similar observations were observed for hot dogs (Higginbotham, Burris, Zivanovic, Davidson, & Stewart, 2014b) and milk (Higginbotham, Burris, Zivanovic, Davidson, & Stewart, 2014a) treated with Hibiscus extract. Higher concentrations of Hibiscus extract demonstrated greater bactericidal activity...
against MRSA when used as a hot dog wash, with counts below detection after 60 min wash and 24 h storage with the highest concentration of extract tested (240 mg/ml) (Higginbotham et al., 2014b). When Hibiscus extracts were tested for activity against E. coli O157:H7 and S. aureus in skim (<0.5%), 1%, 2%, and whole (>3.25%) milk, extracts were less effective in 1%, 2% and whole milk than skim against E. coli. However, at all fat levels tested, extracts were equally inhibitory to S. aureus.

5. Conclusions

Yerba mate extracts were shown to inactivate or inhibit MRSA at relatively low concentrations (2–32 mg/ml) in ground beef mixtures, depending on fat level. To our knowledge, this is the first report demonstrating the antimicrobial activity of extracts from yerba mate against MRSA in ground beef. The results presented here indicate that the natural aqueous extracts derived from yerba mate may be used as a natural alternative to chemical antimicrobials against MRSA in food animal production as well as for the potential development of a new compound to treat staphylococcal infections from MRSA in humans and animals, potentially reducing incidences of MRSA in retail meat products. Further research needs to be conducted to demonstrate the antimicrobial effects of these extracts in other retail meat products as well as perform sensory analysis to determine consumer acceptability. Ultimately, a comprehensive investigation into the identification of the potential compound(s) providing activity would be necessary to evaluate their toxicological risk for use as additives to foods, although yerba mate is currently generally recognized as safe (GRAS) for both animals (21 CFR 582.20) and humans (21 CFR 182.20) by the Food and Drug Administration (FDA).

Acknowledgments

This research was supported by the Ivan Racheff Chair of Excellence Endowment and the Tennessee Agricultural Experiment Station. We thank P. Michael Davidson and Federico Harte for their advice in the research.

Appendix

![Fig. 1](https://example.com/fig1.png) Antimicrobial activity of yerba mate (brand Taragui, Argentina) extracts at 0, 2, 4, 8 and 12 mg/ml against methicillin-resistant *Staphylococcus aureus* (A) ATCC 33591 and (B) ATCC 33593 in a microbiological medium. Error bars represent 95% confidence intervals using least significant differences (P < 0.05).

![Fig. 2](https://example.com/fig2.png) Antimicrobial activity of yerba mate (brand Taragui, Argentina) extracts against a 1:1 mixture of methicillin-resistant *Staphylococcus aureus* strains ATCC 33591 and ATCC 33593 at (A) 0, 1, 2, 4 and 8 mg/ml in tryptic soy broth, (B) 0, 4, 8, 16, and 32 mg/ml in 93% lean ground beef, (C) 0, 4, 8, 16, and 32 mg/ml in 85% lean ground beef, and (D) 0, 4, 8, 16, and 32 mg/ml in 73% lean ground beef. Error bars represent 95% confidence intervals for the mean using least significant differences (P < 0.05).

