Economics and Greenhouse Gases
Emissions of a Biofuel Supply Chain in Tennessee

T. Edward Yu, Burton C. English, Lixia He, James A. Larson, James Calcagno, Joshua Fu and Brad Wilson

University of Tennessee, Knoxville

2015 Sun Grant Regional Conference • Auburn, AL • February 2-4

This study was funded by US DOT Sun Grant Program
Feedstock for Advanced Biofuels

- Lignocellulosic biomass (LCB) energy crops, such as switchgrass, have high potentials in meeting the national mandate of advanced biofuels in the EISA 2007
- Switchgrass has higher biomass content, less inputs use, and less linkage to food prices when compared to conventional crop feedstocks
- However, low bulk density relative to energy content of switchgrass is currently an issue in its biofuel supply chains (BSC)
Design of Biofuel Supply Chains

• Configurations in a cellulosic BSC include
 – Upstream: feedstock production, collection, preprocessing, storage and transportation
 – Midstream: biofuel conversion
 – Downstream: biofuel transportation

• Most of current BSC studies in the literature
 – Applied GIS model for spatial analysis without optimization in decision process
 – Utilized mathematical programming model for system optimization without a fine resolution data to illustrate and validate
Geospatial Elements of Biofuel Supply Chain

• Regional attributes that may affect the optimal configuration of the supply chains include:
 – 1) available land resources for growing feedstock in relation to the biofuel end-user market,
 – 2) the opportunity costs of converting agricultural land to switchgrass production,
 – 3) available infrastructure for placement of the conversion facility, and
 – 4) the real road network for movement of feedstock and biofuel products
Research Objectives

• Estimate the impact of switchgrass harvest & storage configurations on the economic (NPV) and environmental (GHG emissions) outcome of the BSC.

• Illustrate the impact of different objectives (NPV max vs. GHG min) on the decision of the placement of switchgrass BSC
Overview of the Model for NPV Maximization

Inputs
- Feedstock (switchgrass):
 - simulated yield;
 - available land;
 - total establishment cost;
 - annual production, harvest, storage cost.
- Transportation:
 - total capital investment cost;
 - annual transportation cost (labor, fuel, equipment).
- Preprocessing:
 - total capital investment cost;
 - annual operation cost (labor, energy, equipment).
- Conversion:
 - total capital investment cost;
 - annual conversion cost (labor, energy, equipment).
- Biofuel market:
 - annual demand quantity;
 - biofuel price.

Outputs
- Location and capacity of conversion and preprocessing facilities
- Feedstock draw area & land use change
- Feedstock management (harvest, shipment and storage)
- Biofuel management (production and shipment)
- Annual biofuel supply chain cost by component
- Annual revenue & NPV of profit

GHG emissions
- Land use change (DayCent model)
- Feedstock production, harvest, storage and preprocessing (GREET database)
- Biofuel production (GREET and NREL database)
- Feedstock and biofuel transportation (MOVES model)
Mixed-Integer Optimization Model

- **Objective function for maximizing NPV:**

 \[
 \text{NPV} = (1+r)^{-T} (\text{TR} - \text{TC} + \text{Sal})
 \]

 \[
 \text{TR} = \left(\sum_j \sum_g \sum_m \text{Bio}^{fac}_{jg} (p^{bio} \times Y^{bio}_{jgm} + p^{co} \times Y^{co}_{jgm}) \right)
 \]

 \[
 \text{TC} = C^{swi}_{est} + C^{swi}_{pm} + C^{swi}_{sm} + C^{swi}_{hm} + C^{bio}_{om} + C^{bio}_{hm} + C^{bio}_{inv}
 \]

 \[
 C^{swi}_{pm} = (\sum_i \sum_l \text{BEP}_{il} \times X_{il})
 \]

 \[
 \text{BEP}_{il} = \begin{cases}
 \frac{(\text{Price}_{il} \times \text{Yield}_{il} - P_{il}) + \gamma_i + \theta_i}{\text{Yield}_{i}^{swi}}, & \text{if } (\text{Price}_{il} \times \text{Yield}_{il} - P_{il}) \geq L_{Ril} \\
 \frac{L_{Ril} + \gamma_i + \theta_i}{\text{Yield}_{i}^{swi}}, & \text{if } ((\text{Price}_{il} \times \text{Yield}_{il} - P_{il}) < L_{Ril}
 \end{cases}
 \]
Study Assumptions

• Biofuel production target: 20% of transportation fuel used in TN in 2011 (~1.0 billion gallons per year)
 – Demand in west TN is based on the share of regional population (28%)
• Max NPV of two harvest/storage systems:
 – large square balers (LSB) & chopping & wrap round baler (CWR)
• Single harvest season (Nov-Feb): storage dry matter losses of feedstock considered
• No more than 50% of total hay and pasture land can be converted for switchgrass
Data

• Simulated switchgrass yield: Jager et al. (2010)
• Price of crops: average of 2011-13 (USDA NASS)
• Production cost of corps: USDA and POLYSYS
• Production and harvest of switchgrass: Larson et al. (2010) and UT Extension
• Dry matter loss: Mooney et al. (2012)
• Soil carbon estimation: DayCent (Schimel et al. 2001)
• Energy consumption emission: GREET model (Argonne)
• Transportation emission/pollutants: MOVES (US EPA)
Optimal Placement of LSB System
Optimal Placement of CWR System
Economic Output of LSB & CWR Systems

<table>
<thead>
<tr>
<th>Category</th>
<th>LSB</th>
<th>CWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>total annual revenue</td>
<td>1,247.4</td>
<td>1,247.4</td>
</tr>
<tr>
<td>annual feedstock opportunity costs</td>
<td>4.3</td>
<td>4.6</td>
</tr>
<tr>
<td>annual feedstock maintenance cost</td>
<td>21.2</td>
<td>21.5</td>
</tr>
<tr>
<td>annual feedstock harvest & storage cost</td>
<td>137.0</td>
<td>--</td>
</tr>
<tr>
<td>annual feedstock preprocessing & storage cost</td>
<td>--</td>
<td>45.8</td>
</tr>
<tr>
<td>annual feedstock transportation cost</td>
<td>66.9</td>
<td>99.6</td>
</tr>
<tr>
<td>annual feedstock grinding cost</td>
<td>78.9</td>
<td>46.7</td>
</tr>
<tr>
<td>annual biofuel production costs</td>
<td>362.1</td>
<td>362.1</td>
</tr>
<tr>
<td>annual biofuel transportation cost</td>
<td>18.9</td>
<td>16.5</td>
</tr>
<tr>
<td>total annual cost</td>
<td>689.3</td>
<td>618.4</td>
</tr>
<tr>
<td>feedstock establishment cost (years 0 & 10)</td>
<td>192.1</td>
<td>194.9</td>
</tr>
<tr>
<td>preprocessing facility investment cost (year 0)</td>
<td>--</td>
<td>75.8</td>
</tr>
<tr>
<td>preprocessing facility salvage at year 20</td>
<td>--</td>
<td>8.0</td>
</tr>
<tr>
<td>conversion facility investment cost (year 0)</td>
<td>2,037.8</td>
<td>2,037.8</td>
</tr>
<tr>
<td>conversion facility salvage at year 20</td>
<td>213.4</td>
<td>213.4</td>
</tr>
<tr>
<td>NPV over 20 years</td>
<td>1,276.1</td>
<td>1,642.2</td>
</tr>
</tbody>
</table>
GHG Emissions and Air Pollutant in LSB & CWR

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>LSB</th>
<th>CWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average GHG emissions from all components in BSC</td>
<td>CO2e g/gallon</td>
<td>2,166.21</td>
<td>2,222.80</td>
</tr>
<tr>
<td>Average GHG emissions from transportation in BSC</td>
<td>CO2e g/gallon</td>
<td>116.65</td>
<td>211.08</td>
</tr>
<tr>
<td>Average NO$_x$ emissions from transportation in BSC</td>
<td>g/gallon</td>
<td>1.69</td>
<td>1.90</td>
</tr>
<tr>
<td>Average PM$_{2.5}$ emissions from transportation in BSC</td>
<td>g/gallon</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>Average PM$_{10}$ emissions from transportation in BSC</td>
<td>g/gallon</td>
<td>0.04</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Maps of NPV Max and GHG Min for LSB

Square BSC: NPV max

Square BSC: GHG min
NPV of Cash Flows under Two Objectives in LSB

<table>
<thead>
<tr>
<th>Description</th>
<th>NPV Max</th>
<th>GHG Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual sales revenue from biofuel</td>
<td>1,218,134,438</td>
<td>1,218,134,438</td>
</tr>
<tr>
<td>Annual byproducts from conversion facilities</td>
<td>29,233,268</td>
<td>29,233,268</td>
</tr>
<tr>
<td>Annual switchgrass opportunity cost</td>
<td>4,341,463</td>
<td>119,176,284</td>
</tr>
<tr>
<td>Annual maintainence cost</td>
<td>21,188,023</td>
<td>20,951,959</td>
</tr>
<tr>
<td>Annual harvest cost</td>
<td>122,838,923</td>
<td>122,637,608</td>
</tr>
<tr>
<td>Annual storage cost</td>
<td>14,189,271</td>
<td>14,189,271</td>
</tr>
<tr>
<td>Annual switchgrass transportation cost</td>
<td>66,886,666</td>
<td>60,479,279</td>
</tr>
<tr>
<td>Annual biofuel transportation cost</td>
<td>18,904,124</td>
<td>18,719,435</td>
</tr>
<tr>
<td>Annual biofuel conversion & grinding cost</td>
<td>440,974,507</td>
<td>440,974,507</td>
</tr>
<tr>
<td>Switchgrass establishment cost at years 0 & 10</td>
<td>192,118,612</td>
<td>189,978,147</td>
</tr>
<tr>
<td>Conversion facilities investment cost at year 0</td>
<td>2,037,782,797</td>
<td>2,194,790,167</td>
</tr>
<tr>
<td>Conversion facilities salvage value at year 20</td>
<td>213,353,298</td>
<td>229,791,773</td>
</tr>
<tr>
<td>NPV of profit over 20 years</td>
<td>1,276,121,471</td>
<td>447,469,440</td>
</tr>
</tbody>
</table>
GHG Emissions of NPV Max & GHG Min in Square Bale

- Biofuel transportation
- Feedstock transportation
- Feedstock maintenance
- Feedstock storage
- Feedstock harvest
- Land coverage change
Land Coverage Change to Switchgrass

NPV max

GHG min

- Corn
- Cotton
- Sorghum
- Hay & Pasture
- Rice
- Soybeans
- Wheat
Relationship of Carbon and Cost from Land Coverage Change

<table>
<thead>
<tr>
<th>Land Use Change</th>
<th>Soil carbon emissions</th>
<th>Opportunity cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland → switchgrass</td>
<td>Decrease</td>
<td>High</td>
</tr>
<tr>
<td>Hay & pasture land → switchgrass</td>
<td>Increase</td>
<td>Low</td>
</tr>
</tbody>
</table>
Tradeoff Curve of NPV and GHG Emissions

NPV over 20 years (Millions $)

Annual GHG Emissions CO2equiv (Millions Kg)
Land Coverage Change under NPV Max
Feedstock Area and Biofuel Flows
Land Coverage Change under GHG Min
Conclusions

• System configurations have important implications to the economic and environmental outcome of the BSC.
• Preprocessing system with chopping and strach-wrap baler has higher NPV but emits more GHG compared to traditional large square baler system.
• The type of agricultural land converted to biomass feedstock production is very influential to both economic and environmental outcome in BSC.
• High-resolution geospatial data provides better insight the optimal placement of BSC.
Thanks!
Comments and Questions?

T. Edward Yu

tyu1@utk.edu