LANDSCAPE ARCHITECTURAL DESIGN: PROCESS, PREDILECTIONS, AND PRIORITIES

ECOLOGICAL DESIGN IN THE SOUTHEAST
APRIL 23, 2014

DR. JON CALABRIA, ASLA
ASSISTANT PROFESSOR,
COLLEGE OF ENVIRONMENT AND DESIGN,
UNIVERSITY OF GEORGIA
Landscape architects undertake projects that seek to enhance the natural beauty of a space and provide environmental benefits. They may plan the restoration of natural places disturbed by humans, such as wetlands, streams, and mined areas. They may also design “green roofs” or rooftop gardens that can retain storm water, absorb air pollution, and cool buildings while also providing pleasant scenery. Managing storm water runoff is another important part of many landscape architectural plans because it protects clean water sources and natural ecosystems from pollutants. Landscape architects also play a role in preserving and restoring historic landscapes. Landscape architects who work for government agencies design sites and landscapes for government buildings, parks, and other public lands, as well as plan for landscapes and recreation areas in national parks and forests. In addition, they prepare environmental impact assessments based on proposed construction.

Blend art and science...
PREDILECTIONS AND PRIORITIES– SOUTHERN STYLE!
MOONSHINE AND GUNS FOR SALE BESIDE EACH OTHER
WHAT PROCESS?
### Simple linear design process

<table>
<thead>
<tr>
<th>Problem</th>
<th>Research</th>
<th>Analysis</th>
<th>Synthesis</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client needs</td>
<td>Case Studies</td>
<td>Site</td>
<td>Develop Concepts</td>
<td>Construction</td>
</tr>
<tr>
<td></td>
<td>Context</td>
<td>Suitability</td>
<td>Evaluate</td>
<td>Drawings</td>
</tr>
<tr>
<td></td>
<td>Objectives</td>
<td>Vulnerability</td>
<td>Select and Refine</td>
<td>Specifications</td>
</tr>
<tr>
<td></td>
<td>Program</td>
<td>Visual</td>
<td>Master Plan</td>
<td>Bid Documents</td>
</tr>
<tr>
<td></td>
<td>Site Inventory</td>
<td>Relational</td>
<td>Design</td>
<td>Construction</td>
</tr>
<tr>
<td></td>
<td>Des. Criteria</td>
<td>Composite</td>
<td>Details</td>
<td>Contract &amp; Bonding</td>
</tr>
<tr>
<td></td>
<td>Other studies</td>
<td></td>
<td></td>
<td>Inspection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maintenance</td>
</tr>
</tbody>
</table>
RESEARCH QUESTION: WHY SO MUCH DYE?
BECAUSE IT WAS SAINT PATRICK’S DAY!
WHICH PHASE IS THIS?
SO WHAT?
Suitability Analysis / Vulnerability Analysis

Soil

Soil, Slope

Soil, Slope, Vegetation

Most Suitable Composite

Composite Suitability
Suitability Analysis / Vulnerability Analysis

Most Suitable Composite

Composite Suitability

Vulnerability Composite

Mature Forest

Mature Forest, Wildlife Corridor

Mature Forest, Wildlife Corridor, Floodplain
Suitability Analysis / Vulnerability Analysis

Most Suitable Composite

Suitable with minimum vulnerabilities

Composite Suitability

Suitable but has some vulnerability that must be addressed

Vulnerability Composite
PREDILECTIONS AND PRIORITIES
CASE STUDIES

- Projects that promote social and natural aspects
- Landscape Performance
EXISTING CONDITION

Photo Credit: Benjamin Porter
GREEN INFRASTRUCTURE

- “Nature and Sustainability” studio course at UGA’s College of Environment and Design
- Green Infrastructure Plans for UGA’s Campus
- Each student prepared:
  - Campus Plan
  - Site Plan
Suitability analysis illustrating existing conditions for environmental suitability (Illustration by R. Johnson, 2010).
Students suggested reestablishing fragmented linkages, restoring and enhancing hubs and mimicking predevelopment nutrient and hydrologic cycles.

Process sketch illustrating possible connectivity using riparian corridors as an armature in the Green Infrastructure Process (Illustration by Y. Sun, 2010)
SITE PLANNING

How does the student work at the site scale?

Example of GI Site Plan suggesting GI intervention (illustration by M. McCreary, 2010).