Breeding Triploid Hybrids of Shrub Willow with Improved Yield and Biomass Composition

Larry Smart, Associate Professor
Cornell University, Dept. of Horticulture
New York State Agricultural Experiment Station
Geneva, New York, USA

lbs33@cornell.edu
www.hort.cornell.edu/smart/

http://willow.cals.cornell.edu
Willow biomass can be a feedstock for biopower, heat, and liquid biofuels...

...each with its own optimal biomass composition
Shrub Willow Breeding Goals:

• Yield, yield, yield
• Pest/disease resistance
• Density/composition
• Form: harvesting/cuttings
• Stress tolerance for marginal sites
Breeding Approach:

- Capture hybrid vigor and combine traits through controlled pollination and species hybridization
Breeding Strategy:
Exploit the diversity of Salix through hybridization

Subgenus Vetrix

S. bebbiana - Section Fulvae

S. viminalis
S. schmerinii
S. sachalinensis
6X S. dasyclados

S. miyabeana 4X

S. koriyanagi
S. purpurae
S. integra
S. suchowensis

S. eriocephala - Section Cordatae

Section Vimen

Section Helix

Compilation of results from US, Canadian, and European breeding programs
Inter-specific Hybridizations

F₁ hybrids
- S. integra x S. purpurea
- S. cordata x S. eriocephala
- S. purpurea x S. eriocephala
- S. purpurea x S. viminalis
- S. purpurea x S. sachalinensis
- S. koriyanagi x S. purpurea
- S. koriyanagi x S. integra
- S. koriyanagi x S. miyabeana
- S. viminalis x S. miyabeana
- S. viminalis x S. eriocephala
- S. x dasyclados x S. miyabeana
- S. x dasyclados x S. eriocephala
- S. x dasyclados x S. viminalis
- S. eriocephala x S. purpurea
- S. matsuana x S. alba
- S. sachalinensis x S. eriocephala
- S. sericea x S. purpurea
- S. sericea x S. eriocephala
- S. sericea x S. sachalinensis
- S. discolor x S. cinerea
- S. discolor x S. eriocephala

Multi-species hybrids
- S. miyabeana x S. sachowensis
- S. miyabeana x S. dasyclados
- S. integra x S. sachowensis
- S. alberti x S. purpurea
- S. alberti x S. miyabeana
- S. alberti x S. viminalis

~10,000 seedling progeny produced in last 5 years at Cornell
Selection and Scale-up Strategy

Controlled pollinations
- start seeds in gr chamber
- transplant to greenhouse

Plant seedlings in field
1,000’s

Family Screening Trial
Single-plant plots in family rows

2-3 years
Select, propagate
60-80

Selection Trial
Single site, replicated, multi-plant plots

Select 12-15
2-4 years

Yield Trials
Selection and Scale-up Strategy

Controlled pollinations
- start seeds in chamber
- transplant to greenhouse

Plant seedlings in field

Family Nursery Beds
Single-plant plots in family rows

Propagate all in families

2013 Selection Trial
284 clones, 4 reps
3-plant plots

2014 Selection/QTL Trial
1085 clones, 4 reps
3-plant plots
2008 Genetic Selection Trial - Geneva, NY

- 24-plant plots, 3 replicates, 75 clones
- Biomass harvested from middle 8 plants in Dec. 2011
2008 Genetic Selection Trial - Geneva, NY

- 6 new genotypes ranked higher than ‘SX61’
- Top genotype produced 21% greater yield

Dry biomass (Mg ha\(^{-1}\) yr\(^{-1}\))

- DIPLOIDS = 8.3 dry Mg ha\(^{-1}\) yr\(^{-1}\) (n=39)
- TRIPLOIDS = 12.7 dry Mg ha\(^{-1}\) yr\(^{-1}\) (n=26)
- TETRAPOLOIDS = 12.5 dry Mg ha\(^{-1}\) yr\(^{-1}\) (n=9)
- PENTAPLOIDS (n=2)

2008 Genetic Selection Trial - Geneva, NY

Third-year cellulose content

- positively correlated with yield
- strongly negatively correlated with lignin and ash
- not significantly different by ploidy

Graphs:

- **Diploid (A)**
- **Triploid (B)**
- **Tetraploid (C)**
2008 Genetic Selection Trial - Geneva, NY

Third-year lignin content

- negatively correlated with yield and height
- negatively correlated with cellulose, positively with ash
 - significantly lower in triploids and tetraploids
2008 Genetic Selection Trial - Geneva, NY

Third-year lignin S:G ratio

- *positively* correlated with yield, height, density, cellulose
- negatively correlated with lignin and ash
- only one rep analyzed from year 3 due to cost
Mean of Top Five New vs. Current Cultivars
= 15% increase

NEW
x = 16.0

CURRENT
x = 13.9
NEWBio Regional Trials

- Yield Trials (24 cultivars, 48 plant plots)
 - two sites are reclaimed mine land
 - one site – paired amended/unamended
Long-term Triploid Breeding Strategy:
Population improvement of diploids and tetraploids
Crossing blocks, half-sib seed collected in the field

Foundation
♀, ♂ = unimproved tetraploids

Unimproved
♀ = unimproved tetraploids
♂ = unimproved diploids

Improved
♀ = improved tetraploids
♂ = improved diploids
Conclusions…

• We can capture hybrid vigor in willow through hybridization of diverse species.

• Natural variation in ploidy among *Salix* spp. can be exploited to produce triploid progeny.

• Biomass composition traits vary significantly among diverse genotypes and are correlated with yield and height; some traits differ by ploidy.

• Most promising commercial cultivars are triploid and are essentially sterile.
Thanks to…
Michelle Serapiglia
Fred Gouker
Eric Fabio
Craig Carlson
Art Stipanovic (ESF)
Shawn Mansfield (UBC)
Ray Miller (MSU)
Steve DiFazio (WVU)
Tim Volk (ESF)
Armen Kemanian (PSU)
Marvin Hall (PSU)