Evaluation of Large Scale Willow Biomass Crop Harvesting Using a Recently Developed Single-Pass Cut-and-Chip Harvest System Based on a New Holland Forage Harvester and SRC Woody Crop Header

Shun Shi, SUNY-ESF, Syracuse, NY

ESF

State University of New York College of Environmental Science and Forestry

M. Eisenbies, L. Abrahamson, S. Karapetyan, A. Lewis, J. Posselius, R. Shuren, B. Stanton, B. Summers, J. Zerpa, C. Foster, M. McArdle
Funding Support

US Department of Energy – Biomass Program

New York State Energy Research and Development Authority

NYSTAR - Technology Transfer Incentive Program

United States Department of Agriculture

National Institute of Food and Agriculture
Project Partners
Manufacturers - Growers – End-users
Objective
Evaluate Performance

- Single-pass, cut and chip harvesting system in short rotation woody crops
 - New Holland FR-9000 series forage harvester
 - FB-130 short rotation coppice header
Short Rotation Woody Crops
Focus on the Harvesting System

- Single largest cost for delivered chips from short rotation woody crops
- 30 to 40% delivered cost in willow biomass crops
- Second largest source of GHG emissions after N fertilizer in the production system
Willow Biomass Production Cycle

- Site Prep Once
- Plant Once
- Coppice Once
- 3 – 4 Years Growth
 - Rapid Re-growth
- Harvest Woody Biomass
- 7 Crop Harvests
Auburn and Groveland Harvests

Operational Characteristics

- Commercial-scaled (54 ha in total)
 - But had spacing and headland issues
- Experienced operator
- Locally-sourced collection system
- Optimize throughput
 - Harvester engine loading at or near 100%
Three Years Old Shrub Willow
Harvesting Willow Biomass Crops

New Holland Forage Harvester and FB 130 Coppice Header
Time Motion Methods

- 1 harvester and 2-4 collection vehicles operating per day; over 1,000,000 GPS data points collected
Harvester Performance

<table>
<thead>
<tr>
<th>Site</th>
<th>Effective Field Capacity (ha hr⁻¹) SPEED</th>
<th>Effective Material Capacity (Mg wet hr⁻¹) THROUGH PUT</th>
<th>Standing Biomass Delivered (Mg wet ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auburn</td>
<td>1.6 ± 0.02</td>
<td>67 ± 1.4</td>
<td>43 ± 0.8</td>
</tr>
<tr>
<td>Groveland</td>
<td>1.1 ± 0.2</td>
<td>72 ± 1.9</td>
<td>68 ± 1.6</td>
</tr>
</tbody>
</table>
Harvester In Field Performance

Throughput vs Std Biomass

Black Loads – 100% efficient runs, no holds or delays
White Loads – Not 100% efficient, but most over 85%

153 loads
Harvester In Field Performance

- Throughput becomes consistent over 40 Mg ha\(^{-1}\)

- Throughput is low when standing biomass is low
- Rises to a plateau with a slight positive slope
Harvester In Field Performance

- **Speed isolines:**
 - Contour lines
 - Standing biomass limits speed over 40 Mg ha\(^{-1}\)

Mechanical Limit?

- Hard on Operator
- Hard on Machine
- Hard on Stools

Standing Biomass - Delivered (Mg\(_{\text{wet}}\) ha\(^{-1}\))

Effective Material Capacity (Mg\(_{\text{wet}}\) hr\(^{-1}\))
What about chip quality?

• Concern from end users (consistency, size, ash content)
• No chip quality data from large scale willow biomass harvesting
• International Organization for Standardization (ISO) standards on wood chips
Willow Biomass Quality – Moisture

- 195 samples
- 44.4 ± 2.2%
- Only 0.5% of the samples were greater than 50%

![Histogram of moisture content](image)
Willow Biomass Quality – Ash

- $2.2 \pm 0.6\%$
- About 12% of the samples had an ash content above 3% (ISO standard for class B1 wood chips)
Willow Biomass Quality – Particle Size

- Consistent chip sizes were produced across 14 willow cultivars and under different weather conditions.
- ISO class: P45S.
- More than 80% of the chips were between 25 and 45 mm (1.0 and 1.8 in).
- Less than 3% were smaller than 6.4 mm (0.25 in).
Conclusions regarding this system

- Harvester is reliable and predictable
 - Over 70 Mg$_{\text{wet}}$ hr$^{-1}$ on areas with over 40 Mg$_{\text{wet}}$ ha$^{-1}$
- Quality of woody biomass produced is consistent
 - Meet ISO Class B1 standard
- Next:
 - Evaluate and improve collection system efficiency
Questions?

For more information:
- Shun Shi, shshi@esf.edu, 315-470-4924