Case studies of externality benefits of SRWCs in Florida: i) dendroremediation of reclaimed water, and ii) mined land reclamation

SRWCOWG October 12th, 2016

Matt Langholtz, ORNL
Model Explanation: Optimization of Coppice Plantations

Dual optimization:
1. Select optimum number of growth stages per cycle.
2. Select optimum length of each growth stage.
Model Explanation: Optimization of Coppice Plantations

Faustmann:

\[
LEV(t) = \frac{V(t) * e^{-r*t} - C}{1 - e^{-r*t}}
\]

\[
V'(t) = r * V(t) + r * LEV
\]
Model Explanation: Optimization of Coppice Plantations

Faustmann:

\[LEV(t) = \frac{V(t) \cdot e^{-r \cdot t} - C}{1 - e^{-r \cdot t}} \]

\[V'(t) = r \cdot V(t) + r \cdot LEV \]

Hartman (1976):

\[LEV(t) = \frac{\int_0^t NTB(n) \cdot e^{-r \cdot t} \, dn + V(t) \cdot e^{-r \cdot t} - C}{1 - e^{-r \cdot t}} \]

\[NTB(t) + V'(t) = r \cdot V(t) + r \cdot LEV \]
Model Explanation: Optimization of Coppice Plantations

Medema and Lyon (1985):

\[
LEV(t) = \sum_{s=1}^{n} \left[V(t_s) \cdot e^{-r \sum_{j=1}^{s} t_j} \right] - C_s \cdot e^{-r \sum_{j=1}^{s} t_{j-1}}
\]

Smart and Burgess (2000):

\[
LEV(t) = \sum_{s=1}^{n} \left[V(t_s) \cdot e^{-r \sum_{j=1}^{s} t_j} + NTB_s \cdot e^{-r \sum_{j=1}^{s} t_j} \right] - C_s \cdot e^{-r \sum_{j=1}^{s} t_{j-1}}
\]

\[
1 - e^{-r \sum_{j=1}^{n} t_j}
\]
Model Explanation: Optimization of Coppice Plantations

\[
W_{fu3}(t) := \left[\begin{array}{c}
g(t)_1 \cdot e^{-i \cdot t_1} + \int_0^{t_1} \left(\frac{d}{dt_1} NTB_1(t_1) \right) \cdot e^{-i \cdot t_1} \ dt_1 - CE_{pr} \cdot NTB_1(t_1) \cdot e^{-i \cdot t_1} \end{array} \right] \left(C_p + C_w \right) \]

\[
+ \left[\begin{array}{c}
g(t)_2 \cdot e^{-i \cdot (t_1+t_2)} + \int_0^{t_2} \left(\frac{d}{dt_2} NTB_2(t_2) \right) \cdot e^{-i \cdot t_2} \ dt_2 - i \cdot (t_1) - CE_{pr} \cdot NTB_2(t_2) \cdot e^{-i \cdot (t_1+t_2)} - \left[C_w \cdot e^{-i \cdot t_1} \right] \end{array} \right] \]

\[
+ \left[\begin{array}{c}
g(t)_3 \cdot e^{-i \cdot (t_1+t_2+t_3)} + \int_0^{t_3} \left(\frac{d}{dt_3} NTB_3(t_3) \right) \cdot e^{-i \cdot t_3} \ dt_3 - i \cdot (t_1+t_2) - CE_{pr} \cdot NTB_3(t_3) \cdot e^{-i \cdot (t_1+t_2+t_3)} - \left[C_w \cdot e^{-i \cdot (t_1+t_2)} \right] \end{array} \right] \]

\[
1 - e^{-i \cdot (t_1+t_2+t_3)}
\]

\[
W_{03}(t) := \frac{\left[\begin{array}{c}
g(t)_1 \cdot e^{-i \cdot t_1} - (C_p + C_w) \end{array} \right] + \left[\begin{array}{c}
g(t)_2 \cdot e^{-i \cdot (t_1+t_2)} - \left[C_w \cdot e^{-i \cdot (t_1+t_2)} \right] \end{array} \right] \left[\begin{array}{c}
g(t)_3 \cdot e^{-i \cdot (t_1+t_2+t_3)} - \left[C_w \cdot e^{-i \cdot (t_1+t_2)} \right] \end{array} \right] \left[C_w \cdot e^{-i \cdot (t_1+t_2)} \right] \left[C_w \cdot e^{-i \cdot (t_1+t_2)} \right]}{1 - e^{-i \cdot (t_1+t_2+t_3)}}
\]
Model Explanation: Optimization of Coppice Plantations

Dual Optimization

LEV per hectare: (Interest= 6%, wood value=20$ dry Mg\(^{-1}\), value of N removal= $1.00 kg\(^{-1}\)):

<table>
<thead>
<tr>
<th>Number of stages/cycle</th>
<th>Optimum stage length (years)</th>
<th>LEV ($/ha)</th>
<th>Marginal LEV ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.4</td>
<td>$ -1,072.00</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>2.3</td>
<td>$ +26.00</td>
<td>$ 1,098.00</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.3</td>
<td>*</td>
<td>$ +72.00</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.4</td>
<td>$ -369.00</td>
<td>$ -44.00</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Background Scenario 1: Dendroremediation at Water Conserv II - Winter Garden

- 40% to RIBs
- 72 RIBs
- 1,500 Ha (3,725 acres)
- 14 million gal day$^{-1}$
- 7 ppm nitrate nitrogen;
- 1 ppm total phosphorus

Matt Langholtz, ORNL, Jan 21st, 2010
Background Scenario 1: Dendroremediation at Water Conserv II - Winter Garden

E. grandis at WCII:

- ~15 dry Mg ha$^{-1}$ yr$^{-1}$ @ 9,500 trees ha$^{-1}$
- Potential to mitigate nitrates and phosphates.
Background Scenario 1: Dendroremediation at Water Conserv II - Winter Garden

Objective:
Assess the impact of incentives for dendroremediation on profitability and management of SRWC culture irrigated with reclaimed water.

E. grandis at WCII:
- ~15 dry Mg ha$^{-1}$ yr$^{-1}$ @ 9,500 trees ha$^{-1}$
- Potential to mitigate nitrates and phosphates.
Model Application: Dendroremediation

NTB functions:

Stock Benefit: \[NTB_s^S = NTB_s(t) \]

Flow Benefit: \[NTB_s^F = \left[\int_0^t \left(\frac{d}{dt} \left(NTB_s(t) \right) \right) \ast e^{(-r \ast t)} \right] dt \]
Model Application: Water Conserv II Scenario

Model components: G&Y

G&Y Function:
• 2nd stage: 80%,
• 3rd state: 65%
• 4th stage 30%

Estimated Yield of Irrigated EG in FL

Yield (dry Mg ha⁻¹)

Time (years)

High Growth Function
Low Growth Function

Background 1 → Background 2 → Model Explanation → Model Application
Model Application: Water Conserv II Scenario

Model components: Nitrogen Accumulation:

<table>
<thead>
<tr>
<th>Tree Component</th>
<th>Nitrate Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stemwood</td>
<td>0.092%</td>
</tr>
<tr>
<td>Stem Bark</td>
<td>0.280%</td>
</tr>
<tr>
<td>Branches</td>
<td>0.272%</td>
</tr>
<tr>
<td>Leaves</td>
<td>1.390%</td>
</tr>
</tbody>
</table>

Nitrogen Accumulation in SRWC Plantation

G&Y Functions

Externalities
Model Application: Water Conserv II Scenario

Value of Nitrogen Removal

Valuation of N removal (City of Orlando Wastewater Treatment):
Total treatment costs: $0.88/1,000 gal
18ppm N removed=68g/1,000 gal
@ 5% of $0.88/1,000 = ~ $0.65 kg\(^{-1}\) N
@ 10% of $0.88/1,000 = ~ $1.29 kg\(^{-1}\) N

Increasing price of removing scarce N?
Decreasing willing to pay to remove additional N?

G&Y Functions

Externalities
Model Application: Water Conserv II Scenario
Assumptions:
Dendroremediation Incentives from $0-$3.50 kg⁻¹ N
Planting cost (with planting stock): $500 Ha⁻¹
Price of mulchwood: $20 dry Mg⁻¹
Irrigation Installment: $2,471 and $3,707 Ha⁻¹
Interest rate: 4 and 6%
Weed Control at coppice harvest: $120 Ha⁻¹
Annual Maintenance: $50 Ha⁻¹
Low and High Estimated Growth Functions
Dendroremediation Scenario: Results

• Every of 1 kg^{-1} of N dendroremediation incentive increases LEV by 206 to 246 Ha^{-1} if treated as a stock benefit, or 246 to 287 Ha^{-1} if treated as a flow benefit.

• The LEV of the *Eucalyptus grandis* SRWC system is likely to be negative without compensation for N dendroremediation, depending largely on irrigation costs and productivity.

Background Scenario 2: Mined land reclamation and CO₂ mitigation using SRWCs

- 162,000 ha (400,000 ac) of phosphate-mined lands in Florida.
- 75% of the nation's and 25% of the world's phosphate supply (IMC Phosphates, 2002).
Background Scenario 2: CO$_2$ mitigation on CSAs using SRWCs

>40,000 ha (100,000 acres) of CSA lands in Central Florida.
Background Scenario 2: CO₂ mitigation on CSAs using SRWCs

Objective:
Assess the impact of incentives for CO₂ mitigation on profitability and management of SRWC culture on CSAs.
Model Application: CO$_2$ mitigation on CSAs using SRWCs

- SRWC-90, EG, EA; June 2001
- Area 22: EG, June 2002
- Area 23: EG, June 2001
- Demonstration area, EG, EA, and CW, April 2001

DBH and Ht data
Model Application: CO$_2$ mitigation on CSAs using SRWCs

![Graph showing DIB Growth Rates at Kent](image)

- **DBH and Ht data**
- **Profile data**
- **Yields**
- **G&Y Functions**
Model Application: CO₂ mitigation on CSAs using SRWCs

C Sequestration (mulch):

\[
NTB_s^M = \int_0^t \left(\frac{d}{dt} \left(C_{b_s} (t) \right) * e^{(-r*t)} \right) dt - \left[\frac{C_{b_s} (t)}{5} * \left(\frac{1-e^{(-r*5)}}{r} \right) \right] * e^{(-r*t)}
\]

C Sequestration (biofuels):

\[
NTB_s^{BF} = \int_0^t \left(\frac{d}{dt} \left(C_{b_s} (t) \right) * e^{(-r*t)} \right) dt - \left[(0.1*C_{b_s} (t)) \right] * e^{(-r*t)}
\]
Model Application: CO₂ mitigation on CSAs using SRWCs

Assumptions:

• Stumpage prices: $10, $20, and $30 dry Mg⁻¹.
• Site Preparation: $900 and $1,800 ha⁻¹.
• Planting cost: $600 and $1,200 ha⁻¹.
• Weed control: $0 and $200 ha⁻¹ stage⁻¹.
• Growth and Yield: Low (EA 3) and High (EA 4).
• Scenarios: No NTB, NTB (Mulch), and NTB (Biofuels)
• C Price: $0, $5, and $10 Mg⁻¹ C
Model Application: Water Conserv II Scenario

LEVs ($/ha) as a function of Dendroremediation Incentive

- Δ - I=4%, G=H, B=F, Irr=$2,471
- Δ - I=4%, G=L, B=F, Irr=$2,471
- Δ - I=6%, G=H, B=F, Irr=$2,471
- Δ - I=6%, G=L, B=F, Irr=$2,471
Model Application: Water Conserv II Scenario
LEVs ($/ha) as a function of Dendroremediation Incentive

![Graph showing LEVs ($/ha) as a function of Dendroremediation Incentive with different scenarios and rates.](image)
Model Application: Water Conserv II Scenario

Condensed Prediction Equation

\[
LEV(I, g, Y, \nu, N) = \left(\beta_0 * e^{-\beta_1 I} + g * \beta_2 * e^{-\beta_3 I} - Y \right) + \\
\left(\beta_4 * e^{-\beta_5 I} + \beta_6 * \nu + g * \beta_7 * e^{\beta_8 I} \right) * N + \varepsilon
\]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Real interest rate.</td>
</tr>
<tr>
<td>g</td>
<td>Growth model, $-1 \leq g \leq 1$, where -1 and 1 represent the low and high growth, respectively, as represented in Figure 1.</td>
</tr>
<tr>
<td>Y</td>
<td>Price of irrigation establishment, $$/ha$^{-1}$</td>
</tr>
<tr>
<td>ν</td>
<td>$0=stock$ benefit calculation, $1=flow$ benefit calculation</td>
</tr>
<tr>
<td>N</td>
<td>Value of N dendroremediation benefit, $$/kg$^{-1}$.</td>
</tr>
</tbody>
</table>
Model Application: Water Conserv II Scenario

\[
\frac{d}{dt} v(t) \quad \frac{v(t)}{t}
\]

Yield (dry Mg)

\[V_{\text{max}} = 2.9\]
Model Application: CO$_2$ mitigation on CSAs using SRWCs
Model Application: CO$_2$ mitigation on CSAs using SRWCs

![DIB Growth, SRWC-90 graph](image)

- **DBH and Ht data**
- **Profile data**
- **Yields**

Legend:
- EA 3 Average
- EA 4 Average
- Predicted EA3
- Predicted EA4
Model Application: CO₂ mitigation on CSAs using SRWCs

WCII IB and Lakeland OB Yield Comparison

Yield (dry Mg ha⁻¹) vs. time (years)

- WCII Low Estimate
- WCII High Estimate
- Lakeland EA 3
- Lakeland EA 4

Yields

DBH and Ht data
Profile data

G&Y Functions
Model Application: CO$_2$ mitigation on CSAs using SRWCs

<table>
<thead>
<tr>
<th>Product</th>
<th>$/kWh</th>
<th>$/green ton</th>
<th>$/dry Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulch (low)</td>
<td></td>
<td>$8</td>
<td>$18</td>
</tr>
<tr>
<td>Mulch (high)</td>
<td></td>
<td>$16</td>
<td>$35</td>
</tr>
<tr>
<td>Biofuels (delivered, coal equivalent)</td>
<td></td>
<td>$15</td>
<td>$34</td>
</tr>
<tr>
<td>Biofuels (stumpage, coal equivalent)</td>
<td></td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Renewable Energy Marketing (delivered)</td>
<td>2.5¢</td>
<td>$18</td>
<td>$41</td>
</tr>
<tr>
<td>REPI (delivered)</td>
<td>1.76¢</td>
<td>$13</td>
<td>$29</td>
</tr>
<tr>
<td>Section 45 (delivered)</td>
<td>2.75¢</td>
<td>$20</td>
<td>$45</td>
</tr>
<tr>
<td>High Biofuels (delivered, renewable+Sec 45)</td>
<td></td>
<td>$39</td>
<td>$85</td>
</tr>
</tbody>
</table>

Section 45 (delivered, renewable+Sec 45)

|$/dry Mg, Stumpage$

- Mulch: $10 and $20
- Biofuels: $10, $20, $30
Model Application: CO$_2$ mitigation on CSAs using SRWCs

Model Application:

- DBH and Ht data
- Profile data
- Yields
- G&Y Functions
- Optimization Model
- Externalities

LEV as a function of Biomass Price

LEV ($ per ha)

Stumpage Price ($ per dry Mg)

$20,000

$15,000

$10,000

$5,000

$0

-$5,000

$10

$20

$30

$5,000

$10,000

$15,000

$20,000

Profitability, Optimum harvest scheduling

Model Application
Modeled SOC C Sequestration

\[\text{SOC}_\text{max} = 45 \]

\[\text{SOC}(\text{SOC}_\text{max}) = 341 \]

\[\frac{\text{SOC}(\text{SOC}_\text{max})}{\text{SOC}_\text{max}} = 7.5 \]

Above ground (high growth)

\[C_m(3.2) = 47 \]

\[\frac{C_m(3.2)}{3.2} = 14.8 \]

Above ground (low growth)

\[C_m(2.9) = 23 \]

\[\frac{C_m(2.9)}{2.9} = 7.8 \]

SOC Accumulation (Mg/ha)

Time (years)

SOC(t)

SOC\(_{\text{max}}\)

SOC\(_{(\text{SOC}_{\text{max}})}\)

SOC\(_{\text{max}}\)

SOC\(_{(\text{SOC}_{\text{max}})}\)
Model Application: CO$_2$ mitigation on CSAs using SRWCs

Interest 4%, Site prep $1,800$ ha$^{-1}$, Planting $1,200$ ha$^{-1}$, C 5 Mg$^{-1}$

<table>
<thead>
<tr>
<th>NTB</th>
<th>Growth</th>
<th>10/dry Mg</th>
<th>20/dry Mg</th>
<th>30/dry Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LEV ($/ha$)</td>
<td>Harvest age (years)</td>
<td>LEV ($/ha$)</td>
</tr>
<tr>
<td>None</td>
<td>Low</td>
<td>-1,967</td>
<td>3.1, 3.1, 3.2, 3.3, 3.4</td>
<td>674</td>
</tr>
<tr>
<td>C(M)</td>
<td>Low</td>
<td>-1,883</td>
<td>3.1, 3.1, 3.2, 3.2, 3.3</td>
<td>771</td>
</tr>
<tr>
<td>C(B)</td>
<td>Low</td>
<td>-1,424</td>
<td>3.0, 3.1, 3.1, 3.1, 2.9</td>
<td>1,320</td>
</tr>
<tr>
<td>None</td>
<td>High</td>
<td>619</td>
<td>3.4, 3.4, 3.3, 3.0</td>
<td>6,507</td>
</tr>
<tr>
<td>C(M)</td>
<td>High</td>
<td>810</td>
<td>3.4, 3.4, 3.3, 3.0</td>
<td>6,715</td>
</tr>
<tr>
<td>C(B)</td>
<td>High</td>
<td>1,832</td>
<td>3.4, 3.4, 3.3, 2.9</td>
<td>7,869</td>
</tr>
</tbody>
</table>

* Not including below ground C sequestration.
Response to Changes in C Price

Stumpage price $20 dry Mg\(^{-1}\), Interest 4%, Site prep $1,800 ha\(^{-1}\), Planting $1,200 ha\(^{-1}\)

Mulch scenario:

<table>
<thead>
<tr>
<th>$/Mg C</th>
<th>LEV ($/ha)</th>
<th>Optimum Stage Lengths (years)</th>
<th>Marginal Benefit (LEV increment per $ Incentive)</th>
<th>Below Ground ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6,507</td>
<td>3.2, 3.1, 2.9</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6,715</td>
<td>3.2, 3.1, 2.9</td>
<td>42</td>
<td>1,163</td>
</tr>
<tr>
<td>15</td>
<td>7,131</td>
<td>3.3, 3.1, 2.9</td>
<td>42</td>
<td>3,492</td>
</tr>
<tr>
<td>25</td>
<td>7,548</td>
<td>3.3, 3.2, 2.9</td>
<td>42</td>
<td>5,819</td>
</tr>
<tr>
<td>35</td>
<td>7,965</td>
<td>3.3, 3.2, 2.9</td>
<td>42</td>
<td>8,097</td>
</tr>
</tbody>
</table>

Biofuels scenario:

<table>
<thead>
<tr>
<th>$/Mg C</th>
<th>LEV ($/ha)</th>
<th>Optimum Stage Lengths (years)</th>
<th>Marginal Benefit (LEV increment per $ Incentive)</th>
<th>Below Ground ($/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6,507</td>
<td>3.2, 3.1, 2.9</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7,869</td>
<td>3.2, 3.1, 2.9</td>
<td>272</td>
<td>1,163</td>
</tr>
<tr>
<td>15</td>
<td>10,598</td>
<td>3.2, 3.1, 2.8</td>
<td>273</td>
<td>3,492</td>
</tr>
<tr>
<td>25</td>
<td>13,505</td>
<td>3.1, 3.0</td>
<td>291</td>
<td>5,819</td>
</tr>
<tr>
<td>35</td>
<td>16,422</td>
<td>3.1, 3.0</td>
<td>292</td>
<td>8,097</td>
</tr>
</tbody>
</table>
Sensitivity Analysis:

• CO₂ Mitigation: 1$ increase Mg⁻¹ C incentive increases LEV by $17-$42 (mulch) or $109-$292 (biofuels), +~$249 for below ground sequestration ($ ha⁻¹).

• Stumpage Price: 1$ increase dry Mg⁻¹ $284-$629 ha⁻¹.

• Growth and Yield: High growth increases LEV by $2,586-$9,971 ha⁻¹.

• Interest rate: 1% increase decreases LEV by $142-$2,581 ha⁻¹.

• Planting Cost: $100 cost increase decreases LEV by $289-$467 ha⁻¹.

• Decreased harvest costs= ~increased stumpage value.
Results: SRWC on CSAs

• SRWC production likely profitable (LEV>0) assuming stumpage value $20 dry Mg$^{-1}$.

• LEVs ranging from $762 to $6,507 ha$^{-1}$ assuming discount rates of 10% and 4%, respectively.

Results: CO$_2$ mitigation on CSAs using SRWCs

• CO$_2$ mitigation incentives of $5 \text{ Mg}^{-1} \text{ C}$ increase LEVs 84-191 ha^{-1} for mulch and 543-$1,459 \text{ ha}^{-1}$ for biofuels.

• At C prices up to $15 \text{ Mg}^{-1} \text{ C}$, influence of CO$_2$ mitigation incentives on optimum coppice stage lengths is not operationally significant.

Where do we go?

• Related interests: BETO gulf hypoxia workshop
• CBW water quality-bridge the gap between WTP and WTA?
• USDA environmental markets
• Local governments?
SRWC Decision Support System:

Land Expectation Value (LEV), Equal Annual Equivalent (EAE), Internal Rate of Return (IRR), and Net Present Value (NPV) Calculator

<table>
<thead>
<tr>
<th>INPUTS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stumpage Price, Incentives, Capital Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stumpage price ($ green ton⁻¹)</td>
<td></td>
<td></td>
<td>$10</td>
</tr>
<tr>
<td>Renewable Energy Portfolio Incentive ($ green ton⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Incentives ($ green ton⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total stumpage value ($ green ton⁻¹)</td>
<td></td>
<td></td>
<td>$10</td>
</tr>
<tr>
<td>Capital cost (annual interest rate)</td>
<td></td>
<td></td>
<td>5.0%</td>
</tr>
</tbody>
</table>

Start-up Costs			
Herbicide ($ acre⁻¹)			$200
Site Prep ($ acre⁻¹)			$50
Disk ($ acre⁻¹)			$90
Bed ($ acre⁻¹)			$200
Total:			$540

Costs at the Beginning of Each Rotation			
Fertilize ($ acre⁻¹)			$40
Progress price per tree			$0.11
Trees per acre (7,200-3,400)			$3,000
Cost of Trees ($ acre⁻¹)			$3374
Planting cost ($ acre⁻¹)			$150
Total			$564

| Costs at the Beginning of Each Coppice | | | |
| Weed control ($ acre⁻¹) | | | $40 |

Annual Costs

| | | |
| Annual maintenance/administration ($ acre⁻¹) | | $10 |

General Parameters

Inside bark or total above-ground biomass	Total above-ground biomass	1.7
Expansion factor for branches and leaves		4.0
Number of coppices per rotation		4
Age of first harvest		5.0
Harvest age of first coppice		3.0
Harvest age of second coppice		3.0
Harvest age of third coppice		3.0
Total Rotation Length		12.0

Initial harvest yield (as % of first harvest)		100%
First coppice yield (as % of first harvest)		80%
Second coppice yield (as % of first harvest)		70%
Third harvest yield (as % of first harvest)		60%

Estimated Yield within a Rotation:

| | Initial | 1st Cop. | 2nd Cop. | 3rd Cop. |
| Green tons per acre | | | | |

Yields (green tons acre⁻¹) by harvest age within a rotation

Initial harvest at 3 years of age	65.1
First coppice at 3 years of age	68.1
Second coppice at 3 years of age	69.6
Third coppice at 3 years of age	81.1

Figure 1. The SRWC Decision Support System spreadsheet.
Questions?

Matt Langholtz, ORNL, Jan 21st, 2010